Blog

Machine Learning Algorithms

image

Brief Description: Machine learning is a branch of artificial intelligence, a science that researches machines to acquire new knowledge and new skills and to identify existing knowledge.There are a huge number of ML algorithms out there. Trying to classify them leads to the distinction being made in types of the training procedure, applications, the latest advances, and some of the standard algorithms used by ML scientists in their daily work.Regression, Classification, Clustering, Dimensionality Reduction, Ensemble Algorithms.

Supervised Learning

How it works: This algorithm consists of a target / outcome variable (or dependent variable) which is to be predicted from a given set of predictors (independent variables). Using these set of variables, we generate a function that map inputs to desired outputs. The training process continues until the model achieves a desired level of accuracy on the training data. Examples of Supervised Learning: Regression, Decision Tree, Random Forest, KNN, Logistic Regression etc.

Unsupervised Learning

How it works: In this algorithm, we do not have any target or outcome variable to predict / estimate. It is used for clustering population in different groups, which is widely used for segmenting customers in different groups for specific intervention. Examples of Unsupervised Learning: Apriori algorithm, K-means.

Reinforcement Learning

How it works: Using this algorithm, the machine is trained to make specific decisions. It works this way: the machine is exposed to an environment where it trains itself continually using trial and error. This machine learns from past experience and tries to capture the best possible knowledge to make accurate business decisions. Example of Reinforcement Learning: Markov Decision Process

List of Common Machine Learning Algorithms
  • Linear Regression
  • Logistic Regression
  • Decision Tree
  • SVM
  • Naive Bayes
  • kNN
  • K-Means
  • Random Forest
  • Dimensionality Reduction Algorithms
  • Gradient Boosting algorithms
    • GBM
    • XGBoost
    • LightGBM
    • CatBoost